1. taiebook.pages.dev
  2. ///

Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Đề Kiểm Tra: Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 1:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 2:

Bảng biến thiên trong hình vẽ là của hàm sốTrắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( {3; + \infty } \right)\).
Câu 4:

Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?

Ta có: \(y = {x^3} – 3{x^2} + 3x + 5 \Rightarrow y’ = 3{x^2} – 6x + 3 \geqslant 0\,,\;\forall x \in \mathbb{R}\) và \(y’ = 0 \Leftrightarrow 3{x^2} – 6x + 3 = 0 \Leftrightarrow x = 1\)

Nên hàm số \(y = {x^3} – 3{x^2} + 3x + 5\) đồng biến trên \(\mathbb{R}\).
Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số đã cho.Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 6:

Cho hàm số \(y = \frac{{2x – 3}}{{4 – x}}\). Hãy chọn khẳng định đúng trong các khẳng định sau:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 4 \right\}\).Ta có \(y = \frac{{2x – 3}}{{ – x + 4}}\)\( \Rightarrow y' = \frac{5}{{{{\left( { – x + 4} \right)}^2}}} > 0\), \(\forall x \ne 4\).Do đó hàm số hàm số đồng biến trên các khoảng \(\left( {4; + \infty } \right)\) và \(\left( { – \infty ;4} \right)\).
Câu 7:

Hàm số \(y = {x^3} – 3{x^2} + 3\) đồng biến trên khoảng

Hàm số đã cho có tập xác định là \(\mathbb{R}\).

\(y' = 3{x^2} – 6x,\,\forall x \in \mathbb{R}\)\( \Rightarrow y' > 0 \Leftrightarrow x \in \left( { – \infty \,;\,0} \right) \cup \left( {2\,;\, + \infty } \right)\).

Vậy hàm số đồng biến trên cáckhoảng \(\left( { – \infty \,;\,0} \right)\) và \(\left( {2\,;\, + \infty } \right)\). Suy ra
Câu 8:

Tìm khoảng đồng biến của hàm số: \(y = {x^4} – 6{x^2} + 8x + 1\).

Ta có : \(y' = 4{x^3} – 12x + 8\) ; \(y' = 0 \Leftrightarrow \left[ \begin{gathered} x = – 2 \hfill \\ x = 1 \hfill \\ \end{gathered} \right.\).Bảng biến thiên:Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5Vậy hàm số đồng biến trên khoảng \(\left( { – 2; + \infty } \right)\).
Câu 9:

Các khoảng đồng biến của hàm số \(y = 3{x^5} – 5{x^3} + 2024\) là:

Lưu ý: Dấu của \(y'\) không đổi khi qua nghiệm kép.
Câu 10:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y = 2024 – f\left( x \right)\) đồng biến trên khoảng nào dưới đây?Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Xét hàm số \(y = 2024 – f\left( x \right)\)Ta có \(y' = – f'\left( x \right)\)

\(y' > 0 \Leftrightarrow f'\left( x \right) < 0\).

Dựa vào đồ thị ta thấy trên khoảng \(\left( {0\,;1} \right)\) thì \(f'\left( x \right) < 0\).

Vậy trên khoảng \(\left( {0;1} \right)\) hàm số \(y = 2024 – f\left( x \right)\) đồng biến.

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Đáp án câu 1:
A
\(\left( {0;1} \right)\)
Đáp án câu 2:
C
\(y = \frac{{ - 2x - 4}}{{x + 1}}\).
Đáp án câu 3:
C
Hàm số đã cho đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\).
Đáp án câu 4:
C
\(y = {x^3} - 3{x^2} + 3x + 5\).
Đáp án câu 5:
D
\(\left( { - 2;0} \right)\).
Đáp án câu 6:
A
Hàm số nghịch biến trên mỗi khoảng xác định.
Đáp án câu 7:
C
\(\left( {0\,;\, + \infty } \right)\).
Đáp án câu 8:
B
\(\left( { - 2; + \infty } \right)\).
Đáp án câu 9:
A
\(\left( { - \infty ; - 1} \right)\); \(\left( {0;1} \right)\).
Đáp án câu 10:
A
\(\left( {1;2} \right)\).

Xem thêm: Đáp án Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5 mới nhất.

TaiEbook.vn là nền tảng chia sẻ tài liệu học tập và sách PDF miễn phí, hỗ trợ học sinh, sinh viên và giáo viên tiếp cận kho tri thức chất lượng. Website cung cấp đa dạng tài liệu từ giáo trình, đề thi, bài giảng đến sách tham khảo thuộc nhiều cấp học và lĩnh vực khác nhau. Tất cả nội dung đều được định dạng PDF, dễ dàng tải về và sử dụng mọi lúc, mọi nơi. Giao diện thân thiện, thao tác nhanh chóng, không cần đăng ký tài khoản. TaiEbook.vn – nơi học tập dễ dàng bắt đầu chỉ với một cú click!

Về chúng tôi