Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho là:
\(x = 2\).
Hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Đồ thị hàm số có điểm cực tiểu là \(\left( { - 1;3} \right)\).
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm như sau.
Khi đó số điểm cực trị của hàm số \(y = f\left( x \right)\) là
\(1\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình bên.
Tọa độ điểm cực đại của đồ thị hàm số \(y = f\left( x \right)\) là
\(\left( { - 1\,;\, - 4} \right)\)
Cho hàm số \(y = f(x)\) có đồ thị như hình bên. Hàm số có bao nhiêu điểm cực tiểu trên khoảng \(\left( {a;b} \right)\)?
4.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = x{\left( {x + 1} \right)^2}\left( {x – 1} \right)\). Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?
3.
Gọi \({x_1}\) là điểm cực đại, \({x_2}\) là điểm cực tiểu của hàm số \(y = {x^3} – 3x + 2\). Tính \({x_1} + 2{x_2}\).
\(0\).
Dựa vào bảng xét dấu, điểm cực đại là \({x_1} = – 1\) và điểm cực đại là \({x_2} = 1\) nên \({x_1} + 2{x_2} = 1\).Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ. Hàm số có bao nhiêu điểm cực trị?
\(2\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\), đồ thị của đạo hàm \(f'\left( x \right)\) như hình vẽ sau:
Trong các mệnh đề sau, mệnh đề nào sai?
\(f\) đạt cực tiểu tại \(x = - 2\).
Vậy hàm số đạt cực đại tại \(x = – 2\).Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\)có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\)và có bảng xét dấu như hình vẽ bên
Hỏi hàm số \(y = f\left( {{x^2} – 2\left| x \right|} \right)\)có tất cả bao nhiêu điểm cực trị
\(7\).
Kết quả:
Xem thêm: Đáp án Kiểm Tra 15 Phút Cực Trị Của Hàm Số Online-Đề 1 mới nhất.
TaiEbook.vn là nền tảng chia sẻ tài liệu học tập và sách PDF miễn phí, hỗ trợ học sinh, sinh viên và giáo viên tiếp cận kho tri thức chất lượng. Website cung cấp đa dạng tài liệu từ giáo trình, đề thi, bài giảng đến sách tham khảo thuộc nhiều cấp học và lĩnh vực khác nhau. Tất cả nội dung đều được định dạng PDF, dễ dàng tải về và sử dụng mọi lúc, mọi nơi. Giao diện thân thiện, thao tác nhanh chóng, không cần đăng ký tài khoản. TaiEbook.vn – nơi học tập dễ dàng bắt đầu chỉ với một cú click!
Tài Liệu Toán, Tài liệu Tiếng Anh, Tài Liệu Công Dân, Tài Liệu Địa Lí, Tài Liệu Lịch Sử, Tài Liệu Sinh Học, Tài Liệu Ngữ Văn, Tài Liệu Hóa Học, Tài Liệu Vật lí.