Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?
\(2x - y > 3.\)
Miền nghiệm của bất phương trình: \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) – y + 3\) là nửa mặt phẳng chứa điểm:
\(\left( {2;1} \right).\)
Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}} {2x – 5y – 1 > 0} \\ {2x + y + 5 > 0} \\ {x + y + 1 < 0} \end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
\(P\left( {0;2} \right).\)
Cho hệ bất phương trình \(\left\{ \begin{gathered} x + 3y – 2 \geqslant 0 \hfill \\ 2x + y + 1 \leqslant 0 \hfill \\ \end{gathered} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
\(M\left( {0;1} \right).\)
Cặp số \(\left( {2;3} \right)\) là nghiệm của bất phương trình nào sau đây ?
\(x-y < 0\).
Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
\(\left\{ \begin{gathered} x - y > 0 \hfill \\ 2x - y > 1 \hfill \\ \end{gathered} \right..\)
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{gathered} \frac{x}{2} + \frac{y}{3} – 1 \geqslant 0 \hfill \\ x \geqslant 0 \hfill \\ x + \frac{1}{2} – \frac{{3y}}{2} \leqslant 2 \hfill \\ \end{gathered} \right.\) chứa điểm nào trong các điểm sau đây?
\(O\left( {0;0} \right).\)
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
\(2{x^2} + 3y > 0.\)
Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
\(\left\{ \begin{gathered} x - 2y < 0 \hfill \\ x + 3y > - 2 \hfill \\ \end{gathered} \right..\)
Cho bất phương trình \(2x + 3y – 6 \leqslant 0\,\,(1)\). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình \(\left( 1 \right)\) chỉ có một nghiệm duy nhất.
Kết quả:
Xem thêm: Đáp án Trắc Nghiệm Online Bất Phương Trình Và Hệ Bất Phương Trình Bậc Nhất Hai Ẩn Lớp 10 (Đề 1) mới nhất.
TaiEbook.vn là nền tảng chia sẻ tài liệu học tập và sách PDF miễn phí, hỗ trợ học sinh, sinh viên và giáo viên tiếp cận kho tri thức chất lượng. Website cung cấp đa dạng tài liệu từ giáo trình, đề thi, bài giảng đến sách tham khảo thuộc nhiều cấp học và lĩnh vực khác nhau. Tất cả nội dung đều được định dạng PDF, dễ dàng tải về và sử dụng mọi lúc, mọi nơi. Giao diện thân thiện, thao tác nhanh chóng, không cần đăng ký tài khoản. TaiEbook.vn – nơi học tập dễ dàng bắt đầu chỉ với một cú click!
Tài Liệu Toán, Tài liệu Tiếng Anh, Tài Liệu Công Dân, Tài Liệu Địa Lí, Tài Liệu Lịch Sử, Tài Liệu Sinh Học, Tài Liệu Ngữ Văn, Tài Liệu Hóa Học, Tài Liệu Vật lí.